MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. EN 1.4419 Stainless Steel

Both AWS ER120S-1 and EN 1.4419 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
11 to 17
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 930
660 to 1590
Tensile Strength: Yield (Proof), MPa 830
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.2
Embodied Energy, MJ/kg 25
30
Embodied Water, L/kg 56
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
350 to 3920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 33
24 to 57
Strength to Weight: Bending, points 27
22 to 39
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 27
23 to 55

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0.36 to 0.42
Chromium (Cr), % 0 to 0.6
13 to 14.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.4 to 96.1
82 to 86
Manganese (Mn), % 1.4 to 1.8
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.65
0.6 to 1.0
Nickel (Ni), % 2.0 to 2.8
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0