MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. EN 1.4981 Stainless Steel

Both AWS ER120S-1 and EN 1.4981 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is EN 1.4981 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
39
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 930
610
Tensile Strength: Yield (Proof), MPa 830
240

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
4.8
Embodied Energy, MJ/kg 25
67
Embodied Water, L/kg 56
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 13
4.3
Thermal Shock Resistance, points 27
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0.040 to 0.1
Chromium (Cr), % 0 to 0.6
15.5 to 17.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.4 to 96.1
59.6 to 66.7
Manganese (Mn), % 1.4 to 1.8
0 to 1.5
Molybdenum (Mo), % 0.3 to 0.65
1.6 to 2.0
Nickel (Ni), % 2.0 to 2.8
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0.25 to 0.6
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0