AWS ER120S-1 vs. EN 1.7160 Steel
Both AWS ER120S-1 and EN 1.7160 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is EN 1.7160 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 930 | |
470 to 1390 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
250 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1410 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 46 | |
45 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.8 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 9.0 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 4.2 | |
2.3 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.9 | |
1.4 |
Embodied Energy, MJ/kg | 25 | |
19 |
Embodied Water, L/kg | 56 | |
51 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 33 | |
17 to 49 |
Strength to Weight: Bending, points | 27 | |
17 to 35 |
Thermal Diffusivity, mm2/s | 13 | |
12 |
Thermal Shock Resistance, points | 27 | |
14 to 41 |
Alloy Composition
Aluminum (Al), % | 0 to 0.1 | |
0 |
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0 to 0.1 | |
0.14 to 0.19 |
Chromium (Cr), % | 0 to 0.6 | |
0.8 to 1.1 |
Copper (Cu), % | 0 to 0.25 | |
0 to 0.25 |
Iron (Fe), % | 92.4 to 96.1 | |
96.8 to 98.1 |
Manganese (Mn), % | 1.4 to 1.8 | |
1.0 to 1.3 |
Molybdenum (Mo), % | 0.3 to 0.65 | |
0 |
Nickel (Ni), % | 2.0 to 2.8 | |
0 |
Phosphorus (P), % | 0 to 0.010 | |
0 to 0.025 |
Silicon (Si), % | 0.25 to 0.6 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.025 |
Titanium (Ti), % | 0 to 0.1 | |
0 |
Vanadium (V), % | 0 to 0.030 | |
0 |
Zirconium (Zr), % | 0 to 0.1 | |
0 |
Residuals, % | 0 to 0.5 | |
0 |