MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. C69300 Brass

AWS ER120S-1 belongs to the iron alloys classification, while C69300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
8.5 to 15
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 930
550 to 630
Tensile Strength: Yield (Proof), MPa 830
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 46
38
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 25
45
Embodied Water, L/kg 56
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33
19 to 21
Strength to Weight: Bending, points 27
18 to 20
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 27
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0 to 0.6
0
Copper (Cu), % 0 to 0.25
73 to 77
Iron (Fe), % 92.4 to 96.1
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 1.4 to 1.8
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.65
0
Nickel (Ni), % 2.0 to 2.8
0 to 0.1
Phosphorus (P), % 0 to 0.010
0.040 to 0.15
Silicon (Si), % 0.25 to 0.6
2.7 to 3.4
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
18.4 to 24.3
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.5