MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. C75400 Nickel Silver

AWS ER120S-1 belongs to the iron alloys classification, while C75400 nickel silver belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is C75400 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
2.0 to 43
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 930
370 to 630
Tensile Strength: Yield (Proof), MPa 830
130 to 590

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 46
36
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
32
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.9
3.8
Embodied Energy, MJ/kg 25
59
Embodied Water, L/kg 56
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
12 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
75 to 1450
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33
12 to 21
Strength to Weight: Bending, points 27
13 to 19
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 27
12 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0 to 0.6
0
Copper (Cu), % 0 to 0.25
63.5 to 66.5
Iron (Fe), % 92.4 to 96.1
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 1.4 to 1.8
0 to 0.5
Molybdenum (Mo), % 0.3 to 0.65
0
Nickel (Ni), % 2.0 to 2.8
14 to 16
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
16.2 to 22.5
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.5