MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. R30556 Alloy

Both AWS ER120S-1 and R30556 alloy are iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17
45
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Tensile Strength: Ultimate (UTS), MPa 930
780
Tensile Strength: Yield (Proof), MPa 830
350

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1330
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 46
11
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.9
8.7
Embodied Energy, MJ/kg 25
130
Embodied Water, L/kg 56
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
290
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 33
26
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 27
18

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.1
0.050 to 0.15
Chromium (Cr), % 0 to 0.6
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.4 to 96.1
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 1.4 to 1.8
0.5 to 2.0
Molybdenum (Mo), % 0.3 to 0.65
2.5 to 4.0
Nickel (Ni), % 2.0 to 2.8
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0.0010 to 0.1
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0