MakeItFrom.com
Menu (ESC)

AWS ER70S-B2L vs. AZ91C Magnesium

AWS ER70S-B2L belongs to the iron alloys classification, while AZ91C magnesium belongs to the magnesium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER70S-B2L and the bottom bar is AZ91C magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
46
Elongation at Break, % 22
2.3 to 7.9
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
18
Tensile Strength: Ultimate (UTS), MPa 590
170 to 270
Tensile Strength: Yield (Proof), MPa 450
83 to 130

Thermal Properties

Latent Heat of Fusion, J/g 260
350
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
470
Specific Heat Capacity, J/kg-K 470
990
Thermal Conductivity, W/m-K 40
73
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.9 to 12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
52 to 60

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
12
Density, g/cm3 7.8
1.7
Embodied Carbon, kg CO2/kg material 1.6
22
Embodied Energy, MJ/kg 21
160
Embodied Water, L/kg 54
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
3.2 to 16
Resilience: Unit (Modulus of Resilience), kJ/m3 530
75 to 180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
69
Strength to Weight: Axial, points 21
27 to 43
Strength to Weight: Bending, points 20
39 to 53
Thermal Diffusivity, mm2/s 11
43
Thermal Shock Resistance, points 17
9.9 to 16

Alloy Composition

Aluminum (Al), % 0
8.1 to 9.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 95.3 to 97.6
0
Magnesium (Mg), % 0
88.6 to 91.4
Manganese (Mn), % 0.4 to 0.7
0.13 to 0.35
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0 to 0.010
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
0 to 0.3
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3