MakeItFrom.com
Menu (ESC)

AWS ER70S-B2L vs. EN 1.4859 Stainless Steel

Both AWS ER70S-B2L and EN 1.4859 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER70S-B2L and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 590
490
Tensile Strength: Yield (Proof), MPa 450
210

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
36
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.6
6.2
Embodied Energy, MJ/kg 21
88
Embodied Water, L/kg 54
190

Common Calculations

PREN (Pitting Resistance) 3.1
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
91
Resilience: Unit (Modulus of Resilience), kJ/m3 530
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 17
11

Alloy Composition

Carbon (C), % 0 to 0.050
0.050 to 0.15
Chromium (Cr), % 1.2 to 1.5
19 to 21
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 95.3 to 97.6
40.3 to 49
Manganese (Mn), % 0.4 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.4 to 0.65
0 to 0.5
Nickel (Ni), % 0 to 0.2
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.4 to 0.7
0.5 to 1.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Residuals, % 0 to 0.5
0