MakeItFrom.com
Menu (ESC)

AWS ER80S-B2 vs. 359.0 Aluminum

AWS ER80S-B2 belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-B2 and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 21
3.8 to 4.9
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 620
340 to 350
Tensile Strength: Yield (Proof), MPa 540
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 260
530
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 40
140
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.6
8.0
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 54
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 760
450 to 540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 22
37 to 38
Strength to Weight: Bending, points 21
42 to 43
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 18
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0.070 to 0.12
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.35
0 to 0.2
Iron (Fe), % 95.2 to 97.5
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0.4 to 0.7
0 to 0.1
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
8.5 to 9.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15