MakeItFrom.com
Menu (ESC)

AWS ER80S-B2 vs. C15900 Copper

AWS ER80S-B2 belongs to the iron alloys classification, while C15900 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B2 and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
6.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 620
720
Tensile Strength: Yield (Proof), MPa 540
240

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
280
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
48
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
49

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
45
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
37
Resilience: Unit (Modulus of Resilience), kJ/m3 760
260
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
23
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 11
80
Thermal Shock Resistance, points 18
26

Alloy Composition

Aluminum (Al), % 0
0.76 to 0.84
Carbon (C), % 0.070 to 0.12
0.27 to 0.33
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.35
97.5 to 97.9
Iron (Fe), % 95.2 to 97.5
0 to 0.040
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Oxygen (O), % 0
0.4 to 0.54
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.66 to 0.74
Residuals, % 0 to 0.5
0