MakeItFrom.com
Menu (ESC)

AWS ER80S-B2 vs. C16200 Copper

AWS ER80S-B2 belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B2 and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
2.0 to 56
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 620
240 to 550
Tensile Strength: Yield (Proof), MPa 540
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
90
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 21
41
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 760
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.4 to 17
Strength to Weight: Bending, points 21
9.6 to 17
Thermal Diffusivity, mm2/s 11
100
Thermal Shock Resistance, points 18
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0.070 to 0.12
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.35
98.6 to 99.3
Iron (Fe), % 95.2 to 97.5
0 to 0.2
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0 to 0.5
0