MakeItFrom.com
Menu (ESC)

AWS ER80S-B2 vs. R30155 Cobalt

Both AWS ER80S-B2 and R30155 cobalt are iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B2 and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 21
34
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
81
Tensile Strength: Ultimate (UTS), MPa 620
850
Tensile Strength: Yield (Proof), MPa 540
390

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
80
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.6
9.7
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 54
300

Common Calculations

PREN (Pitting Resistance) 3.1
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 760
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 18
21

Alloy Composition

Carbon (C), % 0.070 to 0.12
0.080 to 0.16
Chromium (Cr), % 1.2 to 1.5
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 95.2 to 97.5
24.3 to 36.2
Manganese (Mn), % 0.4 to 0.7
1.0 to 2.0
Molybdenum (Mo), % 0.4 to 0.65
2.5 to 3.5
Nickel (Ni), % 0 to 0.2
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.4 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0