MakeItFrom.com
Menu (ESC)

AWS ER80S-B3L vs. EN 2.4632 Nickel

AWS ER80S-B3L belongs to the iron alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B3L and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
17
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
76
Tensile Strength: Ultimate (UTS), MPa 630
1250
Tensile Strength: Yield (Proof), MPa 530
780

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Melting Completion (Liquidus), °C 1460
1340
Melting Onset (Solidus), °C 1420
1290
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.8
9.4
Embodied Energy, MJ/kg 23
130
Embodied Water, L/kg 60
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 730
1570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 22
42
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 18
39

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.050
0 to 0.13
Chromium (Cr), % 2.3 to 2.7
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 0.35
0 to 0.2
Iron (Fe), % 93.6 to 96
0 to 1.5
Manganese (Mn), % 0.4 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
49 to 64
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.4 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
2.0 to 3.0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0