MakeItFrom.com
Menu (ESC)

AWS ER80S-B3L vs. C95600 Bronze

AWS ER80S-B3L belongs to the iron alloys classification, while C95600 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B3L and the bottom bar is C95600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 630
500
Tensile Strength: Yield (Proof), MPa 530
230

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
980
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 41
39
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.8
3.0
Embodied Energy, MJ/kg 23
50
Embodied Water, L/kg 60
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
60
Resilience: Unit (Modulus of Resilience), kJ/m3 730
230
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.3 to 2.7
0
Copper (Cu), % 0 to 0.35
88 to 92.2
Iron (Fe), % 93.6 to 96
0
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
1.8 to 3.2
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 1.0