MakeItFrom.com
Menu (ESC)

AWS ER80S-B6 vs. 2011 Aluminum

AWS ER80S-B6 belongs to the iron alloys classification, while 2011 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-B6 and the bottom bar is 2011 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
8.5 to 18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 620
310 to 420
Tensile Strength: Yield (Proof), MPa 540
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 40
140 to 170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
35 to 45
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
100 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 4.7
11
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 1.8
7.9
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 71
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
29 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 750
140 to 680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 22
27 to 37
Strength to Weight: Bending, points 21
32 to 40
Thermal Diffusivity, mm2/s 11
51 to 64
Thermal Shock Resistance, points 18
14 to 19

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.6
Bismuth (Bi), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 4.5 to 6.0
0
Copper (Cu), % 0 to 0.35
5.0 to 6.0
Iron (Fe), % 90.6 to 94.7
0 to 0.7
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15