MakeItFrom.com
Menu (ESC)

AWS ER80S-B6 vs. 336.0 Aluminum

AWS ER80S-B6 belongs to the iron alloys classification, while 336.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-B6 and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
75
Elongation at Break, % 19
0.5
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
28
Tensile Strength: Ultimate (UTS), MPa 620
250 to 320
Tensile Strength: Yield (Proof), MPa 540
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
570
Melting Completion (Liquidus), °C 1460
570
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 4.7
11
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.8
7.9
Embodied Energy, MJ/kg 24
140
Embodied Water, L/kg 71
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 750
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
25 to 32
Strength to Weight: Bending, points 21
32 to 38
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 18
12 to 16

Alloy Composition

Aluminum (Al), % 0
79.1 to 85.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 4.5 to 6.0
0
Copper (Cu), % 0 to 0.35
0.5 to 1.5
Iron (Fe), % 90.6 to 94.7
0 to 1.2
Magnesium (Mg), % 0
0.7 to 1.3
Manganese (Mn), % 0.4 to 0.7
0 to 0.35
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.6
2.0 to 3.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
11 to 13
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0 to 0.5
0