MakeItFrom.com
Menu (ESC)

AWS ER80S-B6 vs. 5454 Aluminum

AWS ER80S-B6 belongs to the iron alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-B6 and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 19
2.3 to 18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 620
230 to 350
Tensile Strength: Yield (Proof), MPa 540
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 4.7
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.6
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 71
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 750
68 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
23 to 36
Strength to Weight: Bending, points 21
30 to 41
Thermal Diffusivity, mm2/s 11
55
Thermal Shock Resistance, points 18
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 4.5 to 6.0
0.050 to 0.2
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 90.6 to 94.7
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 0.4 to 0.7
0.5 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15