MakeItFrom.com
Menu (ESC)

AWS ER80S-B6 vs. EN 1.4552 Stainless Steel

Both AWS ER80S-B6 and EN 1.4552 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B6 and the bottom bar is EN 1.4552 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
29
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Tensile Strength: Ultimate (UTS), MPa 620
510
Tensile Strength: Yield (Proof), MPa 540
200

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.7
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 24
52
Embodied Water, L/kg 71
150

Common Calculations

PREN (Pitting Resistance) 7.1
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 750
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 18
11

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 4.5 to 6.0
18 to 20
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 90.6 to 94.7
63.9 to 73
Manganese (Mn), % 0.4 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.6
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Residuals, % 0 to 0.5
0