MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. 332.0 Aluminum

AWS ER80S-Ni1 belongs to the iron alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 27
1.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 630
250
Tensile Strength: Yield (Proof), MPa 530
190

Thermal Properties

Latent Heat of Fusion, J/g 260
530
Melting Completion (Liquidus), °C 1450
580
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 41
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
84

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.6
7.8
Embodied Energy, MJ/kg 21
140
Embodied Water, L/kg 49
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 740
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 11
42
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
2.0 to 4.0
Iron (Fe), % 95.3 to 98.8
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.3
0 to 0.5
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
8.5 to 10.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5