MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. 712.0 Aluminum

AWS ER80S-Ni1 belongs to the iron alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 27
4.5 to 4.7
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 630
250 to 260
Tensile Strength: Yield (Proof), MPa 530
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 41
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.6
8.0
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 49
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
11
Resilience: Unit (Modulus of Resilience), kJ/m3 740
240 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22
24 to 25
Strength to Weight: Bending, points 21
30 to 31
Thermal Diffusivity, mm2/s 11
62
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0
90.7 to 94
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0.4 to 0.6
Copper (Cu), % 0 to 0.35
0 to 0.25
Iron (Fe), % 95.3 to 98.8
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0 to 1.3
0 to 0.1
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.15 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2