MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. EN 1.8875 Steel

Both AWS ER80S-Ni1 and EN 1.8875 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is EN 1.8875 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 630
660
Tensile Strength: Yield (Proof), MPa 530
490

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
3.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.8
Embodied Energy, MJ/kg 21
24
Embodied Water, L/kg 49
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 19
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.12
0 to 0.18
Chromium (Cr), % 0 to 0.15
0 to 1.0
Copper (Cu), % 0 to 0.35
0 to 0.3
Iron (Fe), % 95.3 to 98.8
93.6 to 100
Manganese (Mn), % 0 to 1.3
0 to 1.7
Molybdenum (Mo), % 0 to 0.35
0 to 0.7
Nickel (Ni), % 0.8 to 1.1
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0 to 0.050
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0