MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. CC497K Bronze

AWS ER80S-Ni1 belongs to the iron alloys classification, while CC497K bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
93
Elongation at Break, % 27
6.7
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 72
34
Tensile Strength: Ultimate (UTS), MPa 630
190
Tensile Strength: Yield (Proof), MPa 530
91

Thermal Properties

Latent Heat of Fusion, J/g 260
160
Melting Completion (Liquidus), °C 1450
870
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 470
330
Thermal Conductivity, W/m-K 41
53
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
29
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 21
48
Embodied Water, L/kg 49
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
10
Resilience: Unit (Modulus of Resilience), kJ/m3 740
45
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 24
16
Strength to Weight: Axial, points 22
5.6
Strength to Weight: Bending, points 21
7.8
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 19
7.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
67.5 to 77.5
Iron (Fe), % 95.3 to 98.8
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0 to 1.3
0 to 0.2
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0.5 to 2.5
Phosphorus (P), % 0 to 0.025
0 to 0.1
Silicon (Si), % 0.4 to 0.8
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.5
0