MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. C40500 Penny Bronze

AWS ER80S-Ni1 belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
3.0 to 49
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Tensile Strength: Ultimate (UTS), MPa 630
270 to 540
Tensile Strength: Yield (Proof), MPa 530
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
160
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
42

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
43
Embodied Water, L/kg 49
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.5 to 17
Strength to Weight: Bending, points 21
10 to 17
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 19
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
94 to 96
Iron (Fe), % 95.3 to 98.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.3
0
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.7 to 1.3
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5