MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. C72700 Copper-nickel

AWS ER80S-Ni1 belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 27
4.0 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 630
460 to 1070
Tensile Strength: Yield (Proof), MPa 530
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1450
1100
Melting Onset (Solidus), °C 1410
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
54
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
36
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.6
4.0
Embodied Energy, MJ/kg 21
62
Embodied Water, L/kg 49
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1420 to 4770
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
14 to 34
Strength to Weight: Bending, points 21
15 to 26
Thermal Diffusivity, mm2/s 11
16
Thermal Shock Resistance, points 19
16 to 38

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
82.1 to 86
Iron (Fe), % 95.3 to 98.8
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.3
0.050 to 0.3
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
5.5 to 6.5
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3