MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni1 vs. C82500 Copper

AWS ER80S-Ni1 belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni1 and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 27
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
45
Tensile Strength: Ultimate (UTS), MPa 630
550 to 1100
Tensile Strength: Yield (Proof), MPa 530
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.6
10
Embodied Energy, MJ/kg 21
160
Embodied Water, L/kg 49
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 740
400 to 4000
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
18 to 35
Strength to Weight: Bending, points 21
17 to 27
Thermal Diffusivity, mm2/s 11
38
Thermal Shock Resistance, points 19
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 0.15
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0 to 0.35
95.3 to 97.8
Iron (Fe), % 95.3 to 98.8
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.3
0
Molybdenum (Mo), % 0 to 0.35
0
Nickel (Ni), % 0.8 to 1.1
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0.2 to 0.35
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5