MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni2 vs. 7021 Aluminum

AWS ER80S-Ni2 belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER80S-Ni2 and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 27
9.4
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 620
460
Tensile Strength: Yield (Proof), MPa 540
390

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 52
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.6
8.3
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 51
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
41
Resilience: Unit (Modulus of Resilience), kJ/m3 770
1110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 22
44
Strength to Weight: Bending, points 21
45
Thermal Diffusivity, mm2/s 14
59
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0 to 0.35
0 to 0.25
Iron (Fe), % 94.2 to 97.6
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.3
0 to 0.1
Nickel (Ni), % 2.0 to 2.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0 to 0.25
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15