MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni2 vs. C64200 Bronze

AWS ER80S-Ni2 belongs to the iron alloys classification, while C64200 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni2 and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
14 to 35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 620
540 to 640
Tensile Strength: Yield (Proof), MPa 540
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
980
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 52
45
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 22
50
Embodied Water, L/kg 51
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 770
240 to 470
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
18 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 18
20 to 23

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
88.2 to 92.2
Iron (Fe), % 94.2 to 97.6
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.3
0 to 0.1
Nickel (Ni), % 2.0 to 2.8
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
1.5 to 2.2
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5