MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni2 vs. N06002 Nickel

AWS ER80S-Ni2 belongs to the iron alloys classification, while N06002 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni2 and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 27
41
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
81
Tensile Strength: Ultimate (UTS), MPa 620
760
Tensile Strength: Yield (Proof), MPa 540
310

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1410
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 52
9.9
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.6
9.3
Embodied Energy, MJ/kg 22
130
Embodied Water, L/kg 51
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
250
Resilience: Unit (Modulus of Resilience), kJ/m3 770
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 14
2.6
Thermal Shock Resistance, points 18
19

Alloy Composition

Carbon (C), % 0 to 0.12
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 94.2 to 97.6
17 to 20
Manganese (Mn), % 0 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 2.0 to 2.8
42.3 to 54
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Tungsten (W), % 0
0.2 to 1.0
Residuals, % 0 to 0.5
0