MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni3 vs. C33000 Brass

AWS ER80S-Ni3 belongs to the iron alloys classification, while C33000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni3 and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
7.0 to 60
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 630
320 to 520
Tensile Strength: Yield (Proof), MPa 530
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 52
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 740
60 to 950
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
11 to 18
Strength to Weight: Bending, points 21
13 to 18
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 19
11 to 17

Alloy Composition

Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
65 to 68
Iron (Fe), % 93.2 to 96.6
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.3
0
Nickel (Ni), % 3.0 to 3.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4