MakeItFrom.com
Menu (ESC)

AWS ER80S-Ni3 vs. N09777 Nickel

AWS ER80S-Ni3 belongs to the iron alloys classification, while N09777 nickel belongs to the nickel alloys. They have 42% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-Ni3 and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
39
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 630
580
Tensile Strength: Yield (Proof), MPa 530
240

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
38
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
7.4
Embodied Energy, MJ/kg 23
100
Embodied Water, L/kg 52
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 740
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.2 to 96.6
28.5 to 47.5
Manganese (Mn), % 0 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 3.0 to 3.8
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0