MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. 4115 Aluminum

AWS ER90S-B3 belongs to the iron alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
1.1 to 11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 690
120 to 220
Tensile Strength: Yield (Proof), MPa 620
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.1
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 60
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
11 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
12 to 23
Strength to Weight: Bending, points 22
20 to 30
Thermal Diffusivity, mm2/s 11
66
Thermal Shock Resistance, points 20
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0
94.6 to 97.4
Carbon (C), % 0.070 to 0.12
0
Chromium (Cr), % 2.3 to 2.7
0
Copper (Cu), % 0 to 0.35
0.1 to 0.5
Iron (Fe), % 93.5 to 95.9
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0.4 to 0.7
0.6 to 1.2
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
1.8 to 2.2
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15