MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. EN 2.4663 Nickel

AWS ER90S-B3 belongs to the iron alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
40
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
81
Tensile Strength: Ultimate (UTS), MPa 690
780
Tensile Strength: Yield (Proof), MPa 620
310

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
75
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.8
11
Embodied Energy, MJ/kg 24
140
Embodied Water, L/kg 60
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 20
22

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0.070 to 0.12
0.050 to 0.1
Chromium (Cr), % 2.3 to 2.7
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 0 to 0.35
0 to 0.5
Iron (Fe), % 93.5 to 95.9
0 to 2.0
Manganese (Mn), % 0.4 to 0.7
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.2
8.5 to 10
Nickel (Ni), % 0 to 0.2
48 to 59.6
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0.4 to 0.7
0 to 0.2
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.6
Residuals, % 0 to 0.5
0