MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. EN AC-43500 Aluminum

AWS ER90S-B3 belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 19
4.5 to 13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 690
220 to 300
Tensile Strength: Yield (Proof), MPa 620
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 260
550
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.8
7.8
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 60
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 25
24 to 33
Strength to Weight: Bending, points 22
32 to 39
Thermal Diffusivity, mm2/s 11
60
Thermal Shock Resistance, points 20
10 to 14

Alloy Composition

Aluminum (Al), % 0
86.4 to 90.5
Carbon (C), % 0.070 to 0.12
0
Chromium (Cr), % 2.3 to 2.7
0
Copper (Cu), % 0 to 0.35
0 to 0.050
Iron (Fe), % 93.5 to 95.9
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0.4 to 0.7
0.4 to 0.8
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
9.0 to 11.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15