MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. EN 1.4419 Stainless Steel

Both AWS ER90S-B9 and EN 1.4419 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
11 to 17
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Tensile Strength: Ultimate (UTS), MPa 690
660 to 1590
Tensile Strength: Yield (Proof), MPa 470
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 37
30
Embodied Water, L/kg 91
110

Common Calculations

PREN (Pitting Resistance) 13
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 570
350 to 3920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
24 to 57
Strength to Weight: Bending, points 22
22 to 39
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
23 to 55

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0.36 to 0.42
Chromium (Cr), % 8.0 to 10.5
13 to 14.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 84.4 to 90.7
82 to 86
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.2
0.6 to 1.0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.15 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0