MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. EN 1.4568 Stainless Steel

Both AWS ER90S-B9 and EN 1.4568 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
2.3 to 21
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Tensile Strength: Ultimate (UTS), MPa 690
830 to 1620
Tensile Strength: Yield (Proof), MPa 470
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 37
40
Embodied Water, L/kg 91
140

Common Calculations

PREN (Pitting Resistance) 13
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 570
290 to 5710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
30 to 58
Strength to Weight: Bending, points 22
25 to 40
Thermal Diffusivity, mm2/s 6.9
4.3
Thermal Shock Resistance, points 19
23 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.040
0.7 to 1.5
Carbon (C), % 0.070 to 0.13
0 to 0.090
Chromium (Cr), % 8.0 to 10.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 84.4 to 90.7
70.9 to 76.8
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
6.5 to 7.8
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.15 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0