AWS ER90S-B9 vs. EN 1.5414 Steel
Both AWS ER90S-B9 and EN 1.5414 steel are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN 1.5414 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 18 | |
22 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 75 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 690 | |
550 to 580 |
Tensile Strength: Yield (Proof), MPa | 470 | |
350 to 380 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Melting Completion (Liquidus), °C | 1450 | |
1470 |
Melting Onset (Solidus), °C | 1410 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 25 | |
44 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.1 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.0 | |
2.6 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.6 | |
1.6 |
Embodied Energy, MJ/kg | 37 | |
21 |
Embodied Water, L/kg | 91 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 570 | |
320 to 370 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 25 | |
19 to 20 |
Strength to Weight: Bending, points | 22 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 6.9 | |
12 |
Thermal Shock Resistance, points | 19 | |
16 to 17 |
Alloy Composition
Aluminum (Al), % | 0 to 0.040 | |
0 |
Carbon (C), % | 0.070 to 0.13 | |
0 to 0.2 |
Chromium (Cr), % | 8.0 to 10.5 | |
0 to 0.3 |
Copper (Cu), % | 0 to 0.2 | |
0 to 0.3 |
Iron (Fe), % | 84.4 to 90.7 | |
96.4 to 98.7 |
Manganese (Mn), % | 0 to 1.2 | |
0.9 to 1.5 |
Molybdenum (Mo), % | 0.85 to 1.2 | |
0.45 to 0.6 |
Nickel (Ni), % | 0 to 0.8 | |
0 to 0.3 |
Niobium (Nb), % | 0.020 to 0.1 | |
0 |
Nitrogen (N), % | 0.030 to 0.070 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.010 | |
0 to 0.015 |
Silicon (Si), % | 0.15 to 0.5 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.0050 |
Vanadium (V), % | 0.15 to 0.3 | |
0 |
Residuals, % | 0 to 0.5 | |
0 |