MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. EN AC-21000 Aluminum

AWS ER90S-B9 belongs to the iron alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 18
6.7
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 690
340
Tensile Strength: Yield (Proof), MPa 470
240

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1450
670
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 91
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 570
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 25
32
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 6.9
49
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.040
93.4 to 95.5
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
4.2 to 5.0
Iron (Fe), % 84.4 to 90.7
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.2
0 to 0.1
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0 to 0.050
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1