MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. EN AC-48000 Aluminum

AWS ER90S-B9 belongs to the iron alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 18
1.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
28
Tensile Strength: Ultimate (UTS), MPa 690
220 to 310
Tensile Strength: Yield (Proof), MPa 470
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
7.9
Embodied Energy, MJ/kg 37
140
Embodied Water, L/kg 91
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 570
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 25
23 to 33
Strength to Weight: Bending, points 22
31 to 39
Thermal Diffusivity, mm2/s 6.9
54
Thermal Shock Resistance, points 19
10 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.040
80.4 to 87.2
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
0.8 to 1.5
Iron (Fe), % 84.4 to 90.7
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.2
0 to 0.35
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0.7 to 1.3
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15