MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. Grade 4 Titanium

AWS ER90S-B9 belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
17
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 690
640
Tensile Strength: Yield (Proof), MPa 470
530

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 25
19
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 37
500
Embodied Water, L/kg 91
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
40
Strength to Weight: Bending, points 22
37
Thermal Diffusivity, mm2/s 6.9
7.6
Thermal Shock Resistance, points 19
46

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0 to 0.080
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.4 to 90.7
0 to 0.5
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.6 to 100
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0
0 to 0.4