MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. C61900 Bronze

AWS ER90S-B9 belongs to the iron alloys classification, while C61900 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
21 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 690
570 to 650
Tensile Strength: Yield (Proof), MPa 470
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 25
79
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 37
51
Embodied Water, L/kg 91
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 570
230 to 430
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
19 to 22
Strength to Weight: Bending, points 22
18 to 20
Thermal Diffusivity, mm2/s 6.9
22
Thermal Shock Resistance, points 19
20 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.040
8.5 to 10
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
83.6 to 88.5
Iron (Fe), % 84.4 to 90.7
3.0 to 4.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.6
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5