MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. C84200 Brass

AWS ER90S-B9 belongs to the iron alloys classification, while C84200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 690
250
Tensile Strength: Yield (Proof), MPa 470
120

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 25
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 37
51
Embodied Water, L/kg 91
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
31
Resilience: Unit (Modulus of Resilience), kJ/m3 570
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
8.2
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 6.9
23
Thermal Shock Resistance, points 19
9.1

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
78 to 82
Iron (Fe), % 84.4 to 90.7
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0 to 0.8
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0 to 1.5
Silicon (Si), % 0.15 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
10 to 16
Residuals, % 0
0 to 0.7