MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. C86300 Bronze

AWS ER90S-B9 belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 690
850
Tensile Strength: Yield (Proof), MPa 470
480

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Melting Completion (Liquidus), °C 1450
920
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 25
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 37
51
Embodied Water, L/kg 91
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 19
28

Alloy Composition

Aluminum (Al), % 0 to 0.040
5.0 to 7.5
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
60 to 66
Iron (Fe), % 84.4 to 90.7
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.2
2.5 to 5.0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0 to 1.0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0