MakeItFrom.com
Menu (ESC)

AWS ER90S-D2 vs. EN 1.4852 Stainless Steel

Both AWS ER90S-D2 and EN 1.4852 stainless steel are iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-D2 and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
4.6
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 710
490
Tensile Strength: Yield (Proof), MPa 600
250

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1410
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
41
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
6.9
Embodied Energy, MJ/kg 21
100
Embodied Water, L/kg 50
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
19
Resilience: Unit (Modulus of Resilience), kJ/m3 980
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 13
3.4
Thermal Shock Resistance, points 21
11

Alloy Composition

Carbon (C), % 0.070 to 0.12
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 95.2 to 97.4
29.6 to 40.9
Manganese (Mn), % 1.6 to 2.1
0 to 2.0
Molybdenum (Mo), % 0.4 to 0.6
0 to 0.5
Nickel (Ni), % 0 to 0.15
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.5 to 0.8
1.0 to 2.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Residuals, % 0 to 0.5
0