MakeItFrom.com
Menu (ESC)

AWS ERNiCr-3 vs. EN 1.4640 Stainless Steel

AWS ERNiCr-3 belongs to the nickel alloys classification, while EN 1.4640 stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCr-3 and the bottom bar is EN 1.4640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
51
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
77
Tensile Strength: Ultimate (UTS), MPa 630
620 to 650

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Melting Completion (Liquidus), °C 1380
1420
Melting Onset (Solidus), °C 1330
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 70
14
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 11
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 280
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21
22 to 23
Strength to Weight: Bending, points 19
21
Thermal Shock Resistance, points 18
14 to 15

Alloy Composition

Carbon (C), % 0 to 0.1
0.030 to 0.080
Chromium (Cr), % 18 to 22
18 to 19
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
1.3 to 2.0
Iron (Fe), % 0 to 3.0
67.4 to 73.6
Manganese (Mn), % 2.5 to 3.5
1.5 to 4.0
Nickel (Ni), % 67 to 77.5
5.5 to 6.9
Niobium (Nb), % 2.0 to 3.0
0
Nitrogen (N), % 0
0.030 to 0.11
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.75
0
Residuals, % 0 to 0.5
0