MakeItFrom.com
Menu (ESC)

AWS ERNiCr-3 vs. EN 1.4986 Stainless Steel

AWS ERNiCr-3 belongs to the nickel alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCr-3 and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
18
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
77
Tensile Strength: Ultimate (UTS), MPa 630
750

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Melting Completion (Liquidus), °C 1380
1450
Melting Onset (Solidus), °C 1330
1400
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 70
25
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 11
4.8
Embodied Energy, MJ/kg 160
67
Embodied Water, L/kg 280
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 19
23
Thermal Shock Resistance, points 18
16

Alloy Composition

Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0 to 0.1
0.040 to 0.1
Chromium (Cr), % 18 to 22
15.5 to 17.5
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 3.0
59.4 to 66.6
Manganese (Mn), % 2.5 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 67 to 77.5
15.5 to 17.5
Niobium (Nb), % 2.0 to 3.0
0.4 to 1.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.75
0
Residuals, % 0 to 0.5
0