MakeItFrom.com
Menu (ESC)

AWS ERNiCr-3 vs. EN 1.6932 Steel

AWS ERNiCr-3 belongs to the nickel alloys classification, while EN 1.6932 steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCr-3 and the bottom bar is EN 1.6932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 34
14
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 630
900

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
4.0
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 11
2.0
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 280
56

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 19
26
Thermal Shock Resistance, points 18
26

Alloy Composition

Carbon (C), % 0 to 0.1
0.24 to 0.32
Chromium (Cr), % 18 to 22
1.0 to 1.5
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 3.0
94.5 to 96.4
Manganese (Mn), % 2.5 to 3.5
0.15 to 0.4
Molybdenum (Mo), % 0
0.35 to 0.55
Nickel (Ni), % 67 to 77.5
1.8 to 2.1
Niobium (Nb), % 2.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0 to 0.75
0
Vanadium (V), % 0
0.050 to 0.15
Residuals, % 0 to 0.5
0