MakeItFrom.com
Menu (ESC)

AWS ERNiCr-3 vs. S32520 Stainless Steel

AWS ERNiCr-3 belongs to the nickel alloys classification, while S32520 stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCr-3 and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
28
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 630
860

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1380
1440
Melting Onset (Solidus), °C 1330
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
20
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 11
4.0
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 280
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 19
26
Thermal Shock Resistance, points 18
24

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 18 to 22
24 to 26
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
0.5 to 2.0
Iron (Fe), % 0 to 3.0
57.3 to 66.8
Manganese (Mn), % 2.5 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 67 to 77.5
5.5 to 8.0
Niobium (Nb), % 2.0 to 3.0
0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.75
0
Residuals, % 0 to 0.5
0