MakeItFrom.com
Menu (ESC)

AWS ERNiCrFe-6 vs. EN 1.4446 Stainless Steel

AWS ERNiCrFe-6 belongs to the nickel alloys classification, while EN 1.4446 stainless steel belongs to the iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCrFe-6 and the bottom bar is EN 1.4446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
79
Tensile Strength: Ultimate (UTS), MPa 630
490

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1320
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 13
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
22
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 9.8
4.5
Embodied Energy, MJ/kg 140
60
Embodied Water, L/kg 260
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 3.3
3.6
Thermal Shock Resistance, points 19
11

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 14 to 17
16.5 to 18.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 8.0
59.7 to 66.9
Manganese (Mn), % 2.0 to 2.7
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 67 to 81.5
12.5 to 14.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 2.5 to 3.5
0
Residuals, % 0 to 0.5
0