MakeItFrom.com
Menu (ESC)

AWS ERNiCrFe-6 vs. EN AC-45300 Aluminum

AWS ERNiCrFe-6 belongs to the nickel alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ERNiCrFe-6 and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
1.0 to 2.8
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 630
220 to 290

Thermal Properties

Latent Heat of Fusion, J/g 310
470
Melting Completion (Liquidus), °C 1370
630
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1120

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 21
23 to 29
Strength to Weight: Bending, points 19
30 to 35
Thermal Diffusivity, mm2/s 3.3
60
Thermal Shock Resistance, points 19
10 to 13

Alloy Composition

Aluminum (Al), % 0
90.2 to 94.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
1.0 to 1.5
Iron (Fe), % 0 to 8.0
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 2.0 to 2.7
0 to 0.55
Nickel (Ni), % 67 to 81.5
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.35
4.5 to 5.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 2.5 to 3.5
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15