MakeItFrom.com
Menu (ESC)

AWS ERNiCrFe-6 vs. K93050 Alloy

AWS ERNiCrFe-6 belongs to the nickel alloys classification, while K93050 alloy belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCrFe-6 and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 630
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1320
1380
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
26
Density, g/cm3 8.4
8.2
Embodied Carbon, kg CO2/kg material 9.8
4.7
Embodied Energy, MJ/kg 140
65
Embodied Water, L/kg 260
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 21
17 to 23
Strength to Weight: Bending, points 19
17 to 21
Thermal Shock Resistance, points 19
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 14 to 17
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 8.0
61.4 to 63.9
Manganese (Mn), % 2.0 to 2.7
0 to 1.0
Nickel (Ni), % 67 to 81.5
36
Phosphorus (P), % 0 to 0.030
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.35
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 2.5 to 3.5
0
Residuals, % 0 to 0.5
0